解开太阳的谜题:科学家利用机器学习识别太阳能材料_SOLARZOOM光储亿家
设为首页收藏本站联系我们
| | | | | | | | |
解开太阳的谜题:科学家利用机器学习识别太阳能材料
  • 2019-03-08 14:01:17
  • 浏览:1250
  • 来自:CNMO

  寻找用于太阳能电池的最佳光能,简直就像是大海捞针一样困难。多年来,研究人员开发并测试了数千种不同的染料和色素,以了解它们吸收阳光并将其转化为电能的方式,并且他们还对所有这些问题进行了分类。

  目前,研究人员在美国能源部阿贡国家实验室和英国剑桥大学,已经开发出了一种新颖的设备来识别有前途的太阳能电池材料。DSSCs可以用低成本、可扩展的技术来进行制造,所以它的性价比是十分高的。这项研究能够展示数据驱动材料发现的整个周期,从而使用先进的计算方法来识别具有最佳性能的材料。

  Cole和Argonne的计算科学家通过一个ALCF数据科学项目,创建了一个自动化的工作流程。该流程结合了模拟、数据挖掘和机器学习技术,它能够同时分析数千种化合物。这一过程的优势在于,它摒弃了传统的手工管理数据库的做法,将其其所需的工作时间缩短到了几个月,甚至是几天。

  

  机器学习

  计算工作涉及使用越来越精细的筛选技术,来生成可能的染料对。它们可以相互结合,吸收整个太阳光谱的光。科尔表示,要找到一种对所有波长都有效的染料几乎是不可能的。对于有机分子来说更是如此,因为它们具有更窄的光学吸收带。然而,我们真正想关注的是有机分子,因为它们明显更环保。

  为了将最初的10000个潜在染料候选范围缩小到几个,科学家们再次使用ALCF计算资源来执行一个多步骤的方法。首先,Cole和她的同事们使用数据挖掘工具来消除任何有机金属分子,这些有机金属分子在特定波长下,吸收的光通常比有机染料少。

  在研究的最后阶段,涉及到实验验证。他们需要从这些预测中选出的五种最有前途的染料候选,这需要全球专家的合作。所以,科尔找到了最初的染料开发人员,他们每个人都发回了一种新的染料样品,让她的团队进行研究。科尔说表示,能够让这么多来自世界各地的人参与到这项研究中来,这真的是非常了不起的团队合作。

【责任编辑:sunnyz】
投稿、咨询、爆料——电话:(021)50315221-812,邮箱:edit@solarzoom.com,QQ:2880163182
关键字阅读: 太阳能材料
0条评论
还没有人评论过,赶快抢沙发吧!

匿名发表

微信公众号:
Solarzoom光伏太阳能网
微博公众号:
SOLARZOOM光伏太阳能网
  • 一天
  • 一周
  • 一月
  • 每日资讯
  • 光伏杂志
  • 专题
  • 每日光伏市场参考
马上订阅
印度商工部反倾销局(DGAD)正式公告,将对中国大陆、台湾、马来西亚等地进口的太阳能电池展开反倾销调查。同时,欧盟对中国大陆的
联系我们:021-50315221 服务邮箱:10000@solarzoom.com